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Local and global control of high-period unstable orbits in reversible maps
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We study the nonlinear dynamics of a complex system, described by a two-dimensional reversible map. The
phase space of this map exhibits elements typical of Hamiltonian systems~stability islands! as well as of
dissipative systems~attractor!. Due to the interaction between the stability islands and the attractor, the tran-
sition to chaos in this system occurs through the collapse of the stability island and stochastization of the
limiting-cycles orbits. We show how to apply the method of discrete parametric control to stabilize unstable
high-period orbits. To achieve highly efficient control we introduce the concepts of local and global control.
These concepts are useful in situations where there are ‘‘dangerous’’ points on the target orbit, i.e., the points
where the probability of breakdown of control is high. As a result, the dangerous points turn out to be much
more sensitive to external noise than other points on the orbit, and only the dangerous points determine how
effective the control is.

DOI: 10.1103/PhysRevE.64.026218 PACS number~s!: 05.45.Gg
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I. INTRODUCTION

The interplay of resonances is one of the basic conc
leading to dynamical chaos in low-dimensional Hamiltoni
systems@1–3#. The underlying elements of this concept ha
been adopted from the study of simple maps, e.g., the s
dard ~or Chirikov! map @4,5#. In dissipative systems the or
gin of chaos is attributed to the existence of attractors
phase space, especially to so-called strange attractors@6,7#.
Here the leading role belongs to the Henon map@8# which
exhibits the most general properties of dissipative cha
systems. A class of reversible systems that possesses pr
ties of Hamiltonian as well as dissipative systems has b
introduced in Refs.@9,10#. The phase space of a reversib
system usually contains basic elements of both types: r
nances and attractors. AB laser @11# is the first physical
model where such coexistence was mentioned. The inter
between resonances and attractors in reversible sys
gives rise to dynamical effects like specific bifurcations
fixed points@11–14# leading to the rearranging of the res
nances and a change in the topology of a separatrix unde
influence of the attractor@15,16#.

In the present paper we consider a map which, accord
to the conventional classification@17#, describes a complex
system. This is a wide class of systems that even inclu
some biological objects. Very different systems can be
cluded to the wide class of complex systems if they exh
the following common features:~i! A complex system is
composed of several interacting components;~ii ! its phase
space contains regions of regular and chaotic dynamics;~iii !
it exhibits a multiscale spatiotemporal behavior@17#. Be-
cause of the presence of different components, it is expe
that even a weak perturbation induces transitions betw
them. In this case one can formulate a problem of contro
the dynamics of the complex system. The dynamics in co
plex systems can be controlled by the methods similar
those proposed in Refs.@18–20#. The general idea of thes
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methods is to optimize the dynamics and to obtain the
sired behavior by applying an intentional small perturbat
to the system. As a result, chaotic oscillations are tra
formed into periodic ones. It is assumed that the pertur
tion, being weak, does not change the topology of the ph
space.

In this paper we demonstrate the effectiveness of disc
parametric control for the stabilization of high-period u
stable orbits in the system with complex structure of t
phase space. Our object of control is a two-dimensional~2D!
map that describes the discrete dynamics of a linear osc
tor driven by d kicks with its stiffness coefficient propor
tional to the velocity@15,21#. In Sec. II we study the struc
ture of the phase space of this map and specific effects
are due to the interaction of the attractor with the stabi
islands. We obtain the collapse of the stability island a
study different types of transformations of fixed points of t
n-period orbit that occur under the influence of the attrac
It is shown that in this complex system the transition
chaos does not follow the scenarios that are typical for p
dissipative or pure Hamiltonian systems. For large values
the nonlinearity parameter we obtain a regime of strong s
chastization. This regime is characterized by exponen
sensitivity to the initial conditions when a trajectory a
proaches the limiting cycles, i.e., attractor or infinity. In Se
III we show how to apply the method of discrete paramet
control to stabilize high-period unstable orbits. In the cont
of a complex system one faces a difficulty that origina
from the presence of the attractor. The properties of th
points on the unstable orbit that are close to the attractor
very different from the properties of all other points. In pa
ticular, we show that some characteristics of the unsta
periodic orbits~UPO! which are responsible for the effec
tiveness of control differ along the orbit by 4 orders of ma
nitude. Because of such a marked lack of homogeniety
worthwhile to introducelocal and global control. We also
study the stability of the control with respect to extern
©2001 The American Physical Society18-1
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Gaussian noise. Here we determine thedangerouspoints on
the unstable orbit. These are the points where the probab
of breakdown of control is much higher than the mean val
By introducing the concept of local and global controls, w
develop an effective and practical strategy of stabilization
the UPO.

II. GENERAL DYNAMICAL ANALYSIS OF THE MAP

We consider a map

rn115S xn11

yn11
D 5F~rn!5FS xn

yn
D 5S xn1yn11~mod 2!

yn2«~a2yn!xn
D ,

~1!

which describes the evolution of a complex system. Us
the second of Eq.~1!, the coordinateyn11 in the right-hand
side of the first equation can be expressed throughxn and
yn , thus giving the explicit form of the transformation (yn

xn)

→(yn11

xn11). In what follows we show that the phase space

this map contains elements of Hamiltonian as well as of d
sipative systems. The phase space of this map is a surfa
a cylinderR3S, wherexP@21,1#; points x511 andx5
21 are identical. Variablexn plays the role of an angula
coordinate. The map~1! has fixed pointsPk

s5(xk
s ,yk

s), where
xk

s50 andyk
s52k(k561,62, . . . , aÞ2k). For given val-

ues of the parameterse anda, two solutions of a character
istic equation

l21l tr L1detL50 ~2!

determine the type of a fixed point. HereL (r k)
5(]F/]r )ur5rk

is the Jacobian matrix of the map Eq.~1!. It
is obtained as a result of linearization of Eq.~1! in the vicin-
ity of a fixed point. Straightforward calculations of trL and
detL give

detL51, trL522e~a2yk
s!. ~3!

A standard classification of fixed points by values of trL
and detL is shown in a compact form in Fig. 1. The cond
tion detL51 means that there are only hyperbolic~saddle!
or elliptic ~center! fixed points~see Fig. 1!, i.e., those that
exist in Hamiltonian or conservative systems. In Fig. 2
display the domains of hyperbolic and elliptic points in t
plane of parameters (rk ,e), whererk[a2yk

s is the distance
from the attractor to thekth fixed point. A hyperbolark
54/e separates the domains of elliptic and hyperbolic poin

Another important element of the phase portrait of t
mapping~1! is an invariant manifold which defines for an
parametere a family of specialexactsolutions

xn115~xn1a!, yn5a~mod2!. ~4!

At fixed a each solution gives a periodic or quasiperiod
trajectory for rational or irrational values ofa, respectively.
Different solutions of Eq.~4! are discriminated by the initia
conditionsx0. After one iteration a point at the special tr
jectory ~4! rotates by an anglepa and the coordinatey is
02621
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unchanged. Hence the parametern5a/2 plays the role of a
winding number@2,22#. If e,1 the close-lying trajectories
converge to the corresponding special solution~4! yn5a.
Then it is an attractor. The size of the attractor’s basin
determined by the parametere. The border of the basin has
complicated fractal structure fore.1. The position and
structure of the attractor are determined only by the para
eter a. If n5a/2 is rational,n5p/q (p and q are mutually
coprime numbers!, the attractor consists of periodic traject
ries with periodq, and of quasiperiodic trajectories othe
wise.

For a particular case ofa52k (k50,61,62, . . . ) they
coordinate of the attractor coincides with one of the abo
mentioned fixed points,yk

s . In this case the attractor consis
only of the fixed points of the map~4!.

FIG. 1. Classification of fixed points according to the values
detL and trL .

FIG. 2. Domains in the (rk ,e) plane containing elliptic~hatched
region! or hyperbolic~blank region! fixed points. These domain
are separated by the curveerk54.
8-2
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FIG. 3. ~a! Phase space of the
mapping Eq.~1! for a520 ande
50.2515.~b! Enlargement of the
region of the phase space contai
ing stability islands of higher or-
ders.
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For small values ofe the trajectories approach the attra
tor at an exponential rate,^(yi2a)&'e2gN @angular brackets
denote averaging over the trajectory,^ f i&5(1/N)( i 51

N f i#. To
demonstrate this property we represent the first equatio
the map~1! in the equivalent form (yn112a)5(yn2a)(1
1exn). Iterating this equation we obtain a formal solution

~yn112a!5~y02a!)
i 50

n

~11exi !. ~5!

Rewriting the product in exponential form,

)
i 50

n

~11exi !5expF ~n11!

(
i 50

n

ln~11exi !

n11
G[exp@~n11!

3^ ln~11ex!&#, ~6!

and replacing the time average by a space average~due to
ergodicity!, we get

g5^ ln~11ex!&

5
1

2E21

1

ln~11ex!dx

5
~11e!ln~11e!2~12e!ln~12e!

2e
21. ~7!

In the limiting casee!1 the rateg is reduced to

g'
e2

6
. ~8!

The nonzero rate of attractiong appears in the second ord
with e. The linear term vanishes because attraction altern
with repulsion each half-period.
02621
of
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Variations of the parametersa ande may lead to transfor-
mations of the fixed points of the map~1!, Pk

s5(yk
s52k,xk

s

50), of one type to another. A general classification of t
fixed points of the map~1! is shown in Fig. 1, which we will
use in order to follow these transformations. Let us descr
a typical phase portrait of the map Eq.~1!. Figure 3 shows
the phase space fora520 and«50.2515. The attractor~4! is
located on the liney5a. If e.0 only hyperbolic fixed points
~saddles! are located above the attractor located aty.a. Ac-
cording to Fig. 2, elliptic fixed points~centers! are squeezed
within the interval 0,rk,4/«, i.e., a24/e,y,a. Each
center, surrounded by periodic trajectories, forms a stab
island ~see Fig. 3!. There are only hyperbolic fixed point
~saddles! below the liney5a24/e. The width of the zone
where the elliptic fixed points are placed depends one.
When the parametere increases the zone of elliptic points
a24/e,y,a narrows. This zone vanishes when the ho
zontal line y5a24/e crosses nearest to the attractor fix
point. At that value ofe all the fixed points become hyper
bolic. For e,0 ~see Fig. 2!, elliptic centers lie within the
interval a,y,a24/e and hyperbolic saddles lie outside i
Due to this symmetry, we can analyze the phase portrait o
for the casee.0.

Since the position of the attractor~along they axis! de-
pends on the variable parametera, the influence of the at-
tractor on the fixed points can be easily studied. Varyinga
one can shift the attractor and thus observe the correspon
changes that occur with the fixed points. Using Fig. 2 o
can analyze how the type of fixed point changes when
attractor approaches it. Suppose that for a givene.0 the
attractor is located above the fixed point at a distancerk
@4/e away from it. According to the classification shown
Fig. 2 this point is a hyperbolic one. When the attractor a
proaches the fixed point, a bifurcation occurs and it is c
verted into an elliptic one atrk54/e. Then this point remains
elliptic until the attractor collides with it. At that moment th
elliptic point changes back into the hyperbolic one. When
8-3
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YU. L. BOLOTIN et al. PHYSICAL REVIEW E 64 026218
attractor moves down to the region of negativey, the point
remains hyperbolic. Thus it is possible to separate local
nonlocal influences of the attractor on the fixed point. T
local effect manifests itself when the attractor collides w
the fixed point. The nonlocal influence manifests its
through the bifurcation, when the attractor is at the criti
distance 4/e away from the fixed point.

Apart from the fixed points there are periodic orbits in t
phase portrait of the map~1!. In what follows we will ana-
lyze the conditions when the orbits with the shortest per
~period-2 or two-cycle orbits! exist and study the transforma
tions of the two-cycle orbits with variations of the param
eters a and e. Such analysis is necessary for a compl
description of the bifurcations of the fixed points. Since
two-cycle orbit involves two steps of iterations of the m
~1!, the stability matrix of a two-cycle orbit is given byL2

5L (r2)L (r1). Omitting simple algebra, we represent the
sults in Fig. 4 where we show the transformations of tw
cycle orbits in the (e,rk) plane.

A period-2 orbit consists of two pointsZ15(y1 ,x1) and
Z25(y2 ,x2) which are transformed into each other after o
iteration, Z1,25F(Z2,1). A period-2 orbit consists of two
pointsZ15(x1 ,y1) andZ25(x2 ,y2) which are changed into
each other after one iteration,Z1,25F(Z2,1). The size of the
period-2 orbit is the distance betweenZ1 and Z2. Let us
analyze first the nonlocal influence of the attractor on
fixed point. Suppose that in the casee.ec15A2 the attractor
is located far away from a hyperbolic fixed point. When t
attractor is approaching the fixed point, the period-2 orbit
a finite size @ ux12x2u5 1

2 uy12y2u5(21e)/(11e)# appears
in the vicinity of this fixed point when the attractor and th
fixed point draw together up to the distancerk5(2
1e)2/e(11e). The orbit remains a hyperbolic one until th
distance decreases to the valuerk52(11A2)/e. Here the
orbit becomes elliptic and its characteristic size shrinks. T
next qualitative transition takes place atrk54/e. Here the
elliptic period-2 orbit vanishes at the moment when the
perbolic fixed point becomes elliptic. A similar scenario
the nonlocal influence is also realized for the case 0,e
,A2. The only difference is the absence of the stage co
sponding to the hyperbolic period-2 orbit~see Fig. 4!. A
bifurcation of the fixed point due to the nonlocal attracto
influence is shown in Fig. 5~a!.

Let us proceed to the case of the local influence when

FIG. 4. Hatched regions show the domains of existence of t
cycles and fixed points in thee,rk plane.
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attractor crosses the elliptic fixed point and first consider
range of parameterse.ec2521A2, see Fig. 4. When the
attractor collides with the elliptic fixed point it is transforme
into a hyperbolic one. At the same moment the ellip
period-2 orbit emerges. Unlike the nonlocal case, the size
this orbit increases gradually from zero. While the attrac
moves to the negativey plane, the period-2 orbit become
wider and atrk52(12A2)/e the period-2 elliptic orbit be-
comes hyperbolic. This hyperbolic point disappears atrk
5(22e)2/e(12e). In the case 2,e,ec2 the evolution of
the period-2 orbit is the same except that the stage of
hyperbolic orbit is absent, see Fig. 4. The local influence
the attractor is shown in Fig. 5~b!. The evolution of the
period-2 orbit for the reverse motion of the attractor occ
as it is shown in Fig. 5~a! ~local influence! and Fig. 5~b!
~nonlocal influence!. No other types of bifurcations are ex
pected to appear under either local or nonlocal influence
the attractor on the fixed points. The numerical study is
complete agreement with the aforementioned analysis.

The chaotic dynamics of map~1! reveals peculiarities tha
do not exist in pure Hamiltonian or pure dissipative system
For example, in the casee,1 the chaotic regime has a
intermediate character. The trajectories from the stocha
layer approach the attractor where their flux becomes regu
If the attractor approaches the stability island sufficiently
profile of the boundary of the stochastic layer repeats
shape of the boundary of the attractor. The trajectory rema
a very short time near the attractor. In this region the sh
of the trajectory is flat, i.e., itsy coordinate is almost con
stant. Away from the attractor the trajectory is chaotic with
rather large amplitude of chaotic oscillations along axisy. It
executes chaotic oscillations until it returns to the attrac
again. This type of motion can be compared to the so-ca
intermittency@23# which is well studied in 1D maps. Suc
behavior is observed in the intervala.y.a24/e. Since
there are only hyperbolic points, the stability islands do n
appear. In the cylindrical phase space the unstable bran
of these fixed points wind around the cylinder and appro
eventually6` along they axis. There they form a compli
cated structure of stochastic trajectories.

Whene increases and exceeds one, the invariant mani
Eq. ~4! does not attract trajectories any more. Then the
tractor disappears; the invariant manifold, however, does
Since the attractive properties of the invariant manifold
lost, this leads to instability in the trajectories. The diffusi
motion along they axis becomes anomalous, with a hig

-

FIG. 5. Bifurcations of the fixed point when the attractor
approaching it for~a! nonlocal and~b! local.
8-4
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intermittency of the trajectories. For example, a traject
which slowly diffuses away from the attractor toy51`
suddenly makes an abrupt jump to the region below the
tractor. This happens when one of the factors on the rig
hand side of Eq.~5! changes its sign, thus leading to a gia
instant displacement along they axis. Making use of Eq.~5!
we can evaluate the mean deviation of the anomalous tra
tory from the attractor,

^~yn112a!2&5~y02a!2~112e^x&1e2^x2&!n. ~9!

Here we assume that the coordinatesxi andxj are uncorre-
lated, i.e.,^xixj&}d i j because of the chaotic nature of th
trajectory. Finite correlations lead to some minor chan
only. Taking into account that for a homogeneous traject
^x&50 and^x2&51/3, we get

^rn11
2 &5^~yn112a!2&5~y02a!2 exp@n ln~11e2/3!#.

~10!

Thus ^rn
2& grows exponentially, unlike a normal diffusiv

regime wherê rn
2&}n.

In general, to distinguish the areas with regular and c
otic dynamics, we calculate the Lyapunov exponents@1#. We
classify the domains of the phase space according to the
of the local Lyapunov exponentl calculated for a pair of
neighboring trajectories. Then, marking the domains of re
lar and chaotic motion where, respectively,l,20.1 or l
.0.1 with black and white dots, we visualize the structure
the phase space. The typical pattern fora52.5, e51.7 is
shown in Fig. 6~a!. The solid line shows the island of stabi
ity, located in the area of irregular dynamics. For largere the
measure of chaos increases, see Fig. 6~b! for e52.2. These
figures demonstrate a complex fractal structure of the ph
space. Initial points of the regular and chaotic trajector
cover the phase space, forming a stochastic fractal pat
We would like to mention a correlation between this patte
and the fractal structure of the attractor’s basin. This co
lation originates from the fact that the basin contains mai
the regular trajectories. Because of strong chaos one ca

FIG. 6. Structure of the phase space fora52.5 and~a! «51.7,
~b! «52.2. In the vicinity of each black dot the motion is regul
(l,20.1). Blank regions correspond to chaotic motion (l.0.1).
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predict even the asymptotic behavior~regular or chaotic! of a
trajectory att→`, nor its final point,y5a or y56`.

A simple modification of the map~1! allows one to
change the level of dissipation. This is done by introducin
coefficient (12c) at the termyn in the first equation of the
set ~1!. When the dissipation is switched on smoothlyc
increases from 0 to 1! , the Hamiltonian component is sup
pressed and the system exhibits a strange attractor via a
cade of bifurcations.

The above analysis suggests that due to the peculiar
of the dynamics of the complex system~1! one can expect
certain difficulties in controlling the unstable periodic orbit
Below we will demonstrate that in order to develop an effe
tive method of control one needs to take into account
presence of the attractor and the stability islands, inhomo
neity and the complex structure of the phase space, and
anomalous diffusion of the trajectories.

III. LOCAL AND GLOBAL CONTROL OF THE
UNSTABLE PERIODIC ORBIT

In what follows we apply the discrete one-paramet
Otto, Grebogi, and Yorke~OGY! method @18# in order to
control the high-period unstable orbits of the map~1!. The
method was originally proposed to stabilize UPO imbedd
within a strange attractor. Later it was generalized for
case of Hamiltonian systems@19#. Different modifications
and numerous applications of the OGY method can be fo
in Ref. @20#.

Let the orbit to be controlled follow a periodic sequenc
r1* →r2* →•••→r k* →r k11* 5r1* . Linearizing the dynamical
equations~1! in the neighborhood of this periodic orb
rn* (p0), we obtain

rn112rn11* ~p0!5L @rn2rn* ~p0!#1Bdpn , ~11!

whereB5(]/]p)F(r n* ,p)up5p0
, parameterp is eithera or e,

and p0 is its nominal value. Control is achieved by sma
variations of the parameterp.

A direct application of the OGY method for the control o
the UPO faces two difficulties. First, since Eq.~1! is not a
purely dissipative map, the one-step Jacobian matrixL may
possess complex eigenvalues at some points of the o
This makes the application of the original OGY method im
possible. To avoid this difficulty, we could apply the origin
OGY formula, not at each iteration, but afterk iterations~one
period!. In other words, we could apply control for akth
power of the matrixF which is a cyclic matrix,Fk(r i* )
5r i 1k* 5r i* whose eigenvalues are real. However, here
face the second difficulty, namely, the sensitivity of t
k-step control to external or numerical noise. A necess
modification of the OGY method that allows us to apply t
parametric perturbation at each step was proposed by
et al. @24#. In their approach they considered stable and
stable directions at each point of the UPO. Ifk.1, these
directions do not necessary coincide with the eigenvector
the Jacobian matrix. An efficient method to calculate sta
and unstable directions is given in Ref.@24#. They can also
8-5
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YU. L. BOLOTIN et al. PHYSICAL REVIEW E 64 026218
be calculated by the well-known method of diagonalizat
of the stability matrixL k5L (r i)L (r i 11)•••L (r i 1k) at each
point of the orbit.

Let the unit vectorses(n) andeu(n) be local (r5rn* ) stable
and unstable directions. It is worthwhile to introduce
complementary orthogonal basisfs(n) and fu(n) by means of
the following relations: f s(n)

t es(n)5f u(n)
t eu(n)51, and

f u(n)
t es(n)5f s(n)

t eu(n)50. Here indext stands for a transpose
vector, f t5( f x , f y). Making use of the OGY stabilization
condition f u(n11)

t @rn112rn11* #50, one obtains@26#

dpn52
f u(n11)

t $L @rn2rn* ~p0!#%

f u(n11)
t B

. ~12!

If the object of control is an unstable fixed pointr* , then
f u(n)

t →f u
t , r (n)* →r* , f u

t L→luf u
t . In this case Eq.~12!

is reduced to the well-known OGY formula@18#. Applying
the parametric perturbation~12! at each iteration, one mini
mizes the effect of external noise@25#. At the same time, in a
real situation it is desirable to reduce the rate of numer
calculations, i.e., to apply the perturbation only infrequen
We propose the optimal way of control when the pertur
tion is applied not at each step but at some specific dan
ous points. This can be done due to the above-mentio
inhomogeneity of the trajectories in the phase space.
avoid unnecessary calculations of the perturbation~12! at the
points where the probability of deviation from the target t
jectory is weak, but take special care at the dangerous po
where such probability is high.

The first question that arises is how to locate UPO
which are the object of control. Traditional methods of loc
ing periodic orbits based on the Newton-Raphson proced
require a good guess of the initial conditions for the iterat
procedure. In general, they are not applicable for cycles w
high periods. An appropriate general method was develo
by Schmelcher and Diakonos@27#. The method is applicable
even for the least unstable high-period orbits@28#. They used
the principal idea of control—transforming unstable orb
into stable ones—to locate UPO. The first step of the met
@27# is to apply a universal linear transformation of coord
nates in order to get stable orbits at the same positions w
unstable orbits are located. Then the position of stable or
in new coordinates can be found by a simple iterative pro
dure. For the 2D case the transformation of coordinates ta
the following form:

rn115rn1Li@Fk~rn!2rn#, ~13!

where Li is one of a258 (i 51,2, . . . ,8) invertible 232
matrices.~In D-dimensional space thereaD5D!2D.! The
concrete form ofL i is determined by the type of thecorre-
spondingunstable fixed point. In Figs. 7~a!–7~d! an example
of this transformation for some points of high-periodk
534,35) UPO is shown. We used the transformation~13!
with the matrix L5(0 21

1 0) in order to locate a hyperbolic
point @see pointc in Fig. 7~a!#. This transformation convert
a hyperbolic fixed point into a stable focus. Iterating E
~13!, starting from an arbitrary place near pointc, after
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10–20 iterations we reach the focus. Its location coincid
with the hyperbolic fixed pointc. Recently Davidchack and
Lai @29# presented a method for the fast, complete, and
curate detection of UPO in chaotic systems. Their metho
essentially based on the method by Schmelcher and Diak
@27# and gives an effective technique for selection of t
starting points.

In Fig. 8~a! we show the behavior of the deviationrn

2rn* as the control is switched on and off. One can see t
the system exhibits a long transient period before a trajec
can be stabilized. We use the logarithmic scale to sepa
different stages of the control procedure:~1! chaotic oscilla-
tions before entrapment under control;~2! an exponentially
fast approach to the target periodic orbit;~3! stable motion
along the unstable period-34 orbit;~4! exponentially fast de-
viation from the target orbit after the control is off;~5! re-
construction of natural chaotic oscillations. The rates of
ponential approach~stage 2! and exponential deviation~stage
4! are different. The former is determined by the amplitu
of external perturbation and the latter by the parameters
the free evolution of the system~in particular by the Lay-
punov exponent!.

Figure 9 demonstrates the mechanism of OGY contro
action. We launch four testing points~black squares! from
the vicinity of randomly selected saddle points which belo
to the period-34 orbit. The trajectories of the testing poi
are shown after three successive iterations. After the th
iteration these points are aligned along the stable direct

FIG. 7. Evolution of the phase space under transformation
~13!, shown for some points of the UPO’s withk534 andk535.
~a! Initial view of a small domain of the phase space. The ellip
point is marked by a circle within squareb and the hyperbolic
points are marked by crosses within squaresc and d. Stable~un-
stable! directions at the hyperbolic points are shown by so
~dashed! lines. ~b!–~d! Enlargement of the vicinity of the fixed
pointsb–d, respectively, after the transformation Eq.~13!.
8-6
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Then they follow the periodic orbit remaining in alignme
and approaching the saddle point after each iteration.

At first glance it looks as though the results of the cont
of the high-period unstable orbit in reversible maps w
very similar to the corresponding results for pure Ham
tonian systems@24#. Nevertheless, more careful examinati
shows that in reversible maps the coexistence of attractor
stability islands complicates the situation considerably. T

FIG. 8. Stabilization of the coordinatern when control is
switched on:~a! without noise,~b! with Gaussian noise.
02621
l
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point is that Eq.~12! is valid only when the trajectoryrn
enters a region which is sufficiently close to the target pe
odic orbit. The size and the shape of this region@let us call it
the entrapment region~ER!# are determined by the quantit
dpmax and the local characteristics of a periodic orbit (f, L ,
and B). In our numerical studydpmax is taken from the
interval 0.0007–0.03. In fact, OGY control relation~12! can
be represented as follows:

dpn5Midxn1Nidyn , i 5~n!modk. ~14!

The coefficientsMi andNi can be obtained directly from Eq
~12!. The ER for anyi th point of the periodic orbit is deter
mined by the condition

uMidx1Nidyu,dpmax. ~15!

In Table I we give numerical values for the coefficien
Mi andNi in some typical points of the UPO. The size of th
ER’s determine the time of the entrapment under the con
as well as the critical amplitude of noise which breaks do
control. The areaSi of the ER for any point on the UPO i
proportional todpmax. The proportionality coefficient varies
along the orbit and is given by the numbersMi ,Ni . For
example, the coefficientMi varies by 4 orders of magnitud
along the orbit~see Table I!. Then the sizes of the ER’s of th
corresponding points on the UPO also differ by a few ord
of magnitude. Keeping this fact in mind, it is worthwhile t
introduce a concept oflocal andglobal control for UPO with
essentially different ER’s. In the case of local control t
condition udpnu,dpmax is valid only at certain points of the
periodic orbit. In the case of global control this condition
valid anywhere in the UPO. It is clear that the differen
between local and global control practically vanishes if t
orbit is a fixed point or a homogeneous orbit, i.e., an or
with approximately equal areas of the ER for all points alo
the orbit. This occurs because if the entrapment conditio
satisfied once~locally!, it will also be satisfied at any othe
point of the UPO, thus leading to global control. In contra
FIG. 9. Local evolution of four testing points
towards the stable direction. Stable~unstable! di-
rections are shown by solid~dashed! lines.
8-7
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TABLE I. Size of the entrapment region for different points on the UPO.

Points x* y* Mi Ni

3.4165 0.4997 20.000 348 2.722
Close to the attractor~dangerous points!

3.9161 0.4996 20.000 404 2.502
5.6863 21.9060 22.556 355 2.034

Far from the attractor
1.4545 24.2317 23.396 934 5.044
n
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for nonhomogeneous UPO, global control takes place o
when the condition of local control for points with minima
areas of ER is satisfied. From the point of view of the re
ization of control, these points aredangerous. Figure 10
shows some specific features of the realization of contro
the complex system~1!. In Fig. 10~a! we show a transien
region from the moment when the perturbation is turned
to the steady stage of global control. The duration of t
transient region is about 700 iterations. In Fig. 10~b! we
show the moments at which the condition of local cont
(udpnu,dpmax) was satisfied at any point of the controlle
orbit. The role of the dangerous points can be seen in F
02621
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10~c! and 10~d!, where we plot the controlling perturbatio
dpn for two dangerous points given in Table I. Numbe
along the horizontal axis,T5n/k, is the discrete timen mea-
sured in units of the period of the orbit,k534. The ampli-
tude of the controlling perturbation drops almost to zero
soon as the condition of the local control has been satisfi
After that moment the whole orbit is trapped under contr
Unlike this, a multiple application of the controlling pertu
bation at the points which are not dangerous~the perturba-
tion was turned on an average of once per period! does not
provide a realization of global control. Some vertical lines
Figs. 10~b!–10~d! are thicker than the others. Thick line
ut 300
tion. The
jectory is

ol

local
FIG. 10. ~a! Transient behavior at the initial stage of control. The control perturbation is applied at the 500th iteration. Abo
iterations after that the trajectory is moving chaotically. Fast convergence to the target trajectory starts at around the 800th itera
transient phase is completed when the trajectory is stabilized near the target trajectory. Here the deviation from the target tra
reduced by almost 20 orders of magnitude in comparison with the initial chaotic trajectory.~b! Temporal variation of the controlling
parameterdpn @see Eq.~12!# along the same trajectory. Horizontal linesdpn56dpmax show the interval where the condition of local contr
is satisfied. It is clearly seen that while this condition has been satisfied many times, control is not established.~c! and ~d! Controlling
perturbationdpn (T5n/k) for two dangerous points given in Table I. Global control is realized immediately after the condition of
control has been satisfied.
8-8
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appear when the trajectory returns to the same point for
time interval which cannot be resolved in the horizontal a
scale. This may happen only before the global contro
established.

To check the sensitivity of the control to external Gau
ian noise we add a termsjWn to the right-hand side of Eq.~1!.
Here the componentsjxn

andjyn
are independent identicall

distributed random variables with zero mean value and a
variance. In Fig. 8~b! we show the effect of the Gaussia
noise withs50.01. In the logarithmic scale one can clea
see that when subjected to the action of the noise the
ciency of control goes down by orders of magnitude. Ho
ever, the OGY method even in the presence of noise all
control to be maintained during the same temporal interva
without noise.

We also study the effectiveness of control for differe
amplitudess. The effectiveness can be characterized by
root-mean-square deviationr (s) of the real trajectory from
the target periodic orbit. The plot in Fig. 11 exhibits an
most linear dependence,r (s)}s at low levels of noise. This
dependence becomes nonlinear when the amplitudes in-
creases. Such behavior is in agreement with recent theo
cal estimations@30,31#.

It is worth noting that the points which are marked
dangerous in the process of global stabilization remain d
gerous as well with respect to the breakdown of contro
the presence of noise. At the dangerous points the cond
of local control,dpn,dpmax, is violated much more often
than at points with large entrapment areas. For example
amplitudes50.06, the condition of local control was sati
fied only 1 or 0 times in a total of 120 attempts (120334

FIG. 11. Rms deviation from the target orbit vs amplitude of t
external noise. This deviation shows the stability of control.
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54080 iterations! at the dangerous points shown in Table
At the points close to the attractor, however, the same c
dition was satisfied 119 times.

IV. CONCLUSIONS

We presented a study of the phase space of a com
system and propose a modified OGY method that enable
to control high-period unstable orbits. The dynamics of t
complex system is described by mapping~1! and is essen-
tially affected by the interaction between the attractor and
stability islands. This interaction gives rise to strong spa
and temporal inhomogeneity of the phase space. Becaus
this inhomogeneity a typical trajectory consists of regu
parts ~close to the attractor! and chaotic regions far awa
from it. In the chaotic region the trajectory exhibits interm
tency, i.e., a diffusive motion along they axis is suddenly
interrupted by long jumps. Wheny→6` the diffusion be-
comes anomalously fast; here the root-mean-square disp
ment grows exponentially with time.

Because of all these singularities, which are typical
any complex system, a direct application of the OGY meth
to control high-period unstable orbits fails. Effective at eve
step of iteration, it nevertheless requires hard computatio
efforts to calculate stable and unstable directions at e
point of the orbit. Another option—to apply the control pe
turbation at everykth step of the period-k orbit—is much
easier from the point of view of calculations, but is unstab
with respect to external noise. Our version of the OG
method is free from these difficulties. It was developed
pecially for systems with strongly nonhomogeneous ph
space and is based on the concept of local and global con
We demonstrated that by applying OGY control only at da
gerous points we obtain the same efficiency that the orig
OGY method has, but at the same time reduce drastically
computational efforts. For the above-considered example
the period-34 orbit the dangerous points constitute o
'30% of the total number of points at the periodic orb
The concept of local and global control turns out to be s
ficiently powerful and effective and makes it unnecessary
develop a new method of control different from the OG
method.
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