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Local and global control of high-period unstable orbits in reversible maps
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We study the nonlinear dynamics of a complex system, described by a two-dimensional reversible map. The
phase space of this map exhibits elements typical of Hamiltonian sydtaislity island$ as well as of
dissipative system@ttractoy. Due to the interaction between the stability islands and the attractor, the tran-
sition to chaos in this system occurs through the collapse of the stability island and stochastization of the
limiting-cycles orbits. We show how to apply the method of discrete parametric control to stabilize unstable
high-period orbits. To achieve highly efficient control we introduce the concepts of local and global control.
These concepts are useful in situations where there are “dangerous” points on the target orbit, i.e., the points
where the probability of breakdown of control is high. As a result, the dangerous points turn out to be much
more sensitive to external noise than other points on the orbit, and only the dangerous points determine how
effective the control is.
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[. INTRODUCTION methods is to optimize the dynamics and to obtain the de-
sired behavior by applying an intentional small perturbation
The interplay of resonances is one of the basic concept® the system. As a result, chaotic oscillations are trans-
leading to dynamical chaos in low-dimensional Hamiltonianformed into periodic ones. It is assumed that the perturba-
systemg1-3]. The underlying elements of this concept havetion, being weak, does not change the topology of the phase
been adopted from the study of simple maps, e.g., the staispace.
dard (or Chirikov) map[4,5]. In dissipative systems the ori- In this paper we demonstrate the effectiveness of discrete
gin of chaos is attributed to the existence of attractors irparametric control for the stabilization of high-period un-
phase space, especially to so-called strange attra@gfls  stable orbits in the system with complex structure of the
Here the leading role belongs to the Henon m@pwhich  phase space. Our object of control is a two-dimensiG2ia)
exhibits the most general properties of dissipative chaotienap that describes the discrete dynamics of a linear oscilla-
systems. A class of reversible systems that possesses proptr driven by & kicks with its stiffness coefficient propor-
ties of Hamiltonian as well as dissipative systems has beetional to the velocity{15,21. In Sec. Il we study the struc-
introduced in Refs[9,10]. The phase space of a reversible ture of the phase space of this map and specific effects that
system usually contains basic elements of both types: res@re due to the interaction of the attractor with the stability
nances and attractors. B laser[11] is the first physical islands. We obtain the collapse of the stability island and
model where such coexistence was mentioned. The interplastudy different types of transformations of fixed points of the
between resonances and attractors in reversible systemsperiod orbit that occur under the influence of the attractor.
gives rise to dynamical effects like specific bifurcations oflt is shown that in this complex system the transition to
fixed points[11-14 leading to the rearranging of the reso- chaos does not follow the scenarios that are typical for pure
nances and a change in the topology of a separatrix under thiissipative or pure Hamiltonian systems. For large values of
influence of the attractdrl5,16. the nonlinearity parameter we obtain a regime of strong sto-
In the present paper we consider a map which, accordinghastization. This regime is characterized by exponential
to the conventional classificatidi 7], describes a complex sensitivity to the initial conditions when a trajectory ap-
system. This is a wide class of systems that even includgsroaches the limiting cycles, i.e., attractor or infinity. In Sec.
some biological objects. Very different systems can be indll we show how to apply the method of discrete parametric
cluded to the wide class of complex systems if they exhibitcontrol to stabilize high-period unstable orbits. In the control
the following common featuresii) A complex system is of a complex system one faces a difficulty that originates
composed of several interacting componeiiis; its phase from the presence of the attractor. The properties of those
space contains regions of regular and chaotic dynartiics; points on the unstable orbit that are close to the attractor are
it exhibits a multiscale spatiotemporal behav{d7]. Be- very different from the properties of all other points. In par-
cause of the presence of different components, it is expectditular, we show that some characteristics of the unstable
that even a weak perturbation induces transitions betweeperiodic orbits(UPO) which are responsible for the effec-
them. In this case one can formulate a problem of control ofiveness of control differ along the orbit by 4 orders of mag-
the dynamics of the complex system. The dynamics in comnitude. Because of such a marked lack of homogeniety it is
plex systems can be controlled by the methods similar tavorthwhile to introducelocal and global control. We also
those proposed in Ref§18—-20. The general idea of these study the stability of the control with respect to external
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Gaussian noise. Here we determine tlamgerouspoints on  Det L[ !

the unstable orbit. These are the points where the probability
of breakdown of control is much higher than the mean value.
By introducing the concept of local and global controls, we
develop an effective and practical strategy of stabilization of
the UPO.

1
unstable focus
(repeller

center (elliptic)

table focus

Il. GENERAL DYNAMICAL ANALYSIS OF THE MAP

We consider a map

(Xn+1) = ) F(Xn>
Mh+1= =KF(Iry)= =
1=y ( y

n+1 n

‘stable nocde
\(attractor)

xn+yn+1(mod2)) N, ) A
Yn—e(@=Yn)X, kl)

which describes the evolution of a complex system. Using
the second of Eq(1), the coordinatey/,, ; in the right-hand
side of the first equation can be expressed throxgland

Yn. thus giving the explicit form of the transformatiofﬁ“x

’ unstable node
Crepeller)
1

H(;::i). In what follows we show that the phase space of ° Tt

this map contains elements of Hamiltonian as well as of dis- FIG. 1. Classification of fixed points according to the values of
sipative systems. The phase space of this map is a surface @tL and trL.

a cylinderRX S, wherexe[ —1,1]; pointsx=+1 andx=

—1 are identical. Variable,, plays the role of an angular unchanged. Hence the parametera/2 plays the role of a

coordinate. The mafi) has fixed point®;= (X ,yz), where  winding number[2,22]. If e<1 the close-lying trajectories

xy=0 andyy=2k(k==*1,=2,..., a#2k).Forgivenval- converge to the corresponding special solutidhy,=a.
ues of the parameteksanda, two solutions of a character- Then it is an attractor. The size of the attractor’s basin is
istic equation determined by the parameterThe border of the basin has a
complicated fractal structure foe>1. The position and
AN+ NtrL+detlL=0 (2)  structure of the attractor are determined only by the param-

] . . etera. If v=a/2 is rational,v=p/q (p andq are mutually
determine the type of a fixed point. Her&(r)  coprime numbebs the attractor consists of periodic trajecto-
=(dF/ar)|;, is the Jacobian matrix of the map E@). It ries with periodg, and of quasiperiodic trajectories other-
is obtained as a result of linearization of Efj) in the vicin-  wise.
ity of a fixed point. Straightforward calculations ofLtrand For a particular case adi=2k (k=0,21,+2,...) they
detL give coordinate of the attractor coincides with one of the above-

s mentioned fixed pointsgy; . In this case the attractor consists
detL=1, trL=2—e(a—y,). (3 only of the fixed points of the mag#).

A standard classification of fixed points by values df tr
and det is shown in a compact form in Fig. 1. The condi- Pr
tion detL =1 means that there are only hyperbdlsaddle al
or elliptic (centey fixed points(see Fig. 1, i.e., those that
exist in Hamiltonian or conservative systems. In Fig. 2 we
display the domains of hyperbolic and elliptic points in the ar
plane of parametersg(,€), wherep,=a—Yyj is the distance
from the attractor to thekth fixed point. A hyperbolgp,
= 4/e separates the domains of elliptic and hyperbolic points. 72, 7

Another important element of the phase portrait of the /
mapping(1) is an invariant manifold which defines for any -=| /
parametefe a family of specialexactsolutions

AU

g

Xn+1:(xn+a)y yn:a(mOdZ). (4) -al

At fixed a each solution gives a periodic or quasiperiodic -4 -2 2 4
trajectory for rational or irrational values @f respectively.

Different solutions of Eq(4) are discriminated by the initial FIG. 2. Domains in thegy , €) plane containing ellipti¢hatched
conditionsx,. After one iteration a point at the special tra- region or hyperbolic(blank region fixed points. These domains
jectory (4) rotates by an anglera and the coordinatg is  are separated by the curep,=4.

£
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FIG. 3. (a) Phase space of the
mapping Eq.(1) for a=20 ande
=0.2515.(b) Enlargement of the
region of the phase space contain-
ing stability islands of higher or-
ders.

X

For small values ot the trajectories approach the attrac-

Variations of the parameteesand e may lead to transfor-

tor at an exponential raté(y;—a))~e~ "N [angular brackets mations of the fixed points of the maf), Pr=(yr=2k,x;

denote averaging over the trajectoff,) = (1/N)2i’\':1fi]. To

=0), of one type to another. A general classification of the

demonstrate this property we represent the first equation dfxed points of the magl) is shown in Fig. 1, which we will

the map(1) in the equivalent formy,,;—a)=(y,—a)(1

+ €eX,). Iterating this equation we obtain a formal solution,

n

(Yn+1*a):(YO*a)iHO (1+ex;). (5)

Rewriting the product in exponential form,

> In(1+ex)

70(1+exi):ex (n+1)i ° =exgd(n+1)

n+1
X(In(1+ ex))], (6)

and replacing the time average by a space avetdge to
ergodicity), we get

y={In(1+ ex))

11
:,J' In(1+ ex)dx
-1

2
1+e)n(l+e)—(1—¢€)In(1—
_(+ghn@te-(1-ghnd-o
2e
In the limiting casee<1 the ratey is reduced to
62
Ladr s (8

use in order to follow these transformations. Let us describe
a typical phase portrait of the map Ed.). Figure 3 shows
the phase space far=20 ands =0.2515. The attractg#) is
located on the ling=a. If €>0 only hyperbolic fixed points
(saddlegare located above the attractor locategata. Ac-
cording to Fig. 2, elliptic fixed pointécenter$ are squeezed
within the interval 0<p,<4l/e, i.e., a—4le<y<a. Each
center, surrounded by periodic trajectories, forms a stability
island (see Fig. 3. There are only hyperbolic fixed points
(saddle below the liney=a—4/e. The width of the zone
where the elliptic fixed points are placed depends eon
When the parameter increases the zone of elliptic points,
a—4le<y<a narrows. This zone vanishes when the hori-
zontal liney=a—4/e crosses nearest to the attractor fixed
point. At that value ofe all the fixed points become hyper-
bolic. For e<0 (see Fig. 2, elliptic centers lie within the
interval a<y<a—4/e and hyperbolic saddles lie outside it.
Due to this symmetry, we can analyze the phase portrait only
for the cases>0.

Since the position of the attractéalong they axis) de-
pends on the variable parameterthe influence of the at-
tractor on the fixed points can be easily studied. Varydng
one can shift the attractor and thus observe the corresponding
changes that occur with the fixed points. Using Fig. 2 one
can analyze how the type of fixed point changes when the
attractor approaches it. Suppose that for a giverO the
attractor is located above the fixed point at a distapge
>4/e away from it. According to the classification shown in
Fig. 2 this point is a hyperbolic one. When the attractor ap-
proaches the fixed point, a bifurcation occurs and it is con-

The nonzero rate of attractioyp appears in the second order verted into an elliptic one ai,= 4/e. Then this point remains
with e. The linear term vanishes because attraction alternatedliptic until the attractor collides with it. At that moment the

with repulsion each half-period.

elliptic point changes back into the hyperbolic one. When the
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— a) b)
. elliptic 2-cycles saddle saddle
o 3 B nhyperbolic 2-cycles
k BB cliptic fixed points
center center
2-cycle (elliptic) 2-cycle (elliptic)
1 gy 2 3 g, 4 e FIG. 5. Bifurcations of the fixed point when the attractor is

approaching it for(@ nonlocal andb) local.

FIG. 4. Hatched regions show the domains of existence of two-

cycles and fixed points in the, p, plane. attractor crosses the elliptic fixed point and first consider the
_ _ _ range of parameters>e.,=2+ 2, see Fig. 4. When the

attractor moves down to the region of negativethe point  attractor collides with the elliptic fixed point it is transformed
remains hyperbolic. Thus it is possible to separate local anghto a hyperbolic one. At the same moment the elliptic
nonlocal influences of the attractor on the fixed point. Theperiod-2 orbit emerges. Unlike the nonlocal case, the size of
local effect manifests itself when the attractor collides withthis orbit increases gradually from zero. While the attractor
the ﬁXed pOint. The nonlocal inﬂuence manifeStS itselfmoves to the negativg p|ane, the period_z Orbit becomes
through the bifurcation, when the attractor is at the criticaliqer and atp,=2(1—2)/e the period-2 elliptic orbit be-
distance 4¢ away from the fixed point. o comes hyperbolic. This hyperbolic point disappearspgat

Apart from the fixed points there are periodic orbits in the:(z_ €)%/e(1—€). In the case 2 e< e, the evolution of
phase portrait of the mafi). In what follows we will ana- 1 period-2 orbit is the same except that the stage of the
lyze the conditions when the orbits with the shortest per'OdnyperboIic orbit is absent, see Fig. 4. The local influence of
(period-2 or two-cycle orbisexist and study the transforma- ihe attractor is shown in Fig.(5). The evolution of the
tions of the two-cycle orbits with variations of the param- yerind.2 orbit for the reverse motion of the attractor occurs
etersa and e. Such analysis is necessary for a completess it is shown in Fig. @) (local influence and Fig. %b)
description of_ the bifurcations of the _fixed_ points. Since A(nonlocal influenck No other types of bifurcations are ex-
two-cycle orbit involves two steps of iterations of the map yecied to appear under either local or nonlocal influence of
(1), the stability matrix of a two-cycle orbit is given B the attractor on the fixed points. The numerical study is in
=L(rz)L(r,). Omitting simple algebra, we represent the re-complete agreement with the aforementioned analysis.
sults in F'|g..4 where we show the transformations of tWo-  The chaotic dynamics of m&g) reveals peculiarities that
cycle orbits in the & py) plane. _ do not exist in pure Hamiltonian or pure dissipative systems.

A period-2 orbit consists of two poin®,=(y1,x1) and  For example, in the case<1 the chaotic regime has an
Z,=(Y2,%) which are transformed into each other after onejntermediate character. The trajectories from the stochastic
iteration, Z; ,=F(Z,1). A period-2 orbit consists of two |ayer approach the attractor where their flux becomes regular.
pointsZ,=(x1,y1) andZ,=(x;,y,) which are changed into f the attractor approaches the stability island sufficiently the
each other after one iteratiod; ;= F(Z,,). The size of the profile of the boundary of the stochastic layer repeats the
period-2 orbit is the distance betweén and Z,. Let us  shape of the boundary of the attractor. The trajectory remains
analyze first the nonlocal influence of the attractor on they very short time near the attractor. In this region the shape
fixed point. Suppose that in the case .= \2 the attractor  of the trajectory is flat, i.e., ity coordinate is almost con-
is located far away from a hyperbolic fixed point. When thestant. Away from the attractor the trajectory is chaotic with a
attractor is approaching the fixed point, the period-2 orbit ofrather large amplitude of chaotic oscillations along axi&
a finite size[|x;— X,/ =3]y1— V2| =(2+€)/(1+€)] appears executes chaotic oscillations until it returns to the attractor
in the vicinity of this fixed point when the attractor and the again. This type of motion can be compared to the so-called
fixed point draw together up to the distangg=(2 intermittency[23] which is well studied in 1D maps. Such
+ €)%/ €(1+ €). The orbit remains a hyperbolic one until the behavior is observed in the interval>y>a—4/e. Since
distance decreases to the valse=2(1+ \2)/e. Here the there are only hyperbolic points, the stability islands do not
orbit becomes elliptic and its characteristic size shrinks. Thappear. In the cylindrical phase space the unstable branches
next qualitative transition takes place @t=4/e. Here the of these fixed points wind around the cylinder and approach
elliptic period-2 orbit vanishes at the moment when the hy-eventually+< along they axis. There they form a compli-
perbolic fixed point becomes elliptic. A similar scenario of cated structure of stochastic trajectories.
the nonlocal influence is also realized for the casee0 Whene increases and exceeds one, the invariant manifold
<+/2. The only difference is the absence of the stage correEq. (4) does not attract trajectories any more. Then the at-
sponding to the hyperbolic period-2 orkisee Fig. 4 A  tractor disappears; the invariant manifold, however, does not.
bifurcation of the fixed point due to the nonlocal attractor’'s Since the attractive properties of the invariant manifold are
influence is shown in Fig.(8). lost, this leads to instability in the trajectories. The diffusive

Let us proceed to the case of the local influence when thenotion along they axis becomes anomalous, with a high
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predict even the asymptotic behavioegular or chaotirof a
trajectory att— oo, nor its final pointy=a or y=*oo,

A simple modification of the magl) allows one to
change the level of dissipation. This is done by introducing a
coefficient (1-c) at the termy,, in the first equation of the
set (1). When the dissipation is switched on smoothly (
increases from 0 to)l1, the Hamiltonian component is sup-
pressed and the system exhibits a strange attractor via a cas-
cade of bifurcations.

The above analysis suggests that due to the peculiarities
of the dynamics of the complex systei) one can expect
certain difficulties in controlling the unstable periodic orbits.
Below we will demonstrate that in order to develop an effec-
tive method of control one needs to take into account the
presence of the attractor and the stability islands, inhomoge-

neity and the complex structure of the phase space, and the
FIG. 6. Structure of the phase space o¢2.5 and(@ =17, anomalous diffusion of the trajectories.

(b) e=2.2. In the vicinity of each black dot the motion is regular
(A<—0.1). Blank regions correspond to chaotic motiar~0.1).

I1l. LOCAL AND GLOBAL CONTROL OF THE

intermittency of the trajectories. For example, a trajectory UNSTABLE PERIODIC ORBIT
which slowly diffuses away from the attractor o=+ In what follows we apply the discrete one-parametric
suddenly makes an abrupt jump to the region below the atC)t

. ) to, Grebogi, and YorkdOGY) method[18] in order to
tractor. This happens when one of the factors on the right-: SR .
hand side of Eq(5) changes its sign, thus leading to a giantcontrol the high-period unstable orbits of the m@p. The

instant displacement along thyeaxis. Making use of Eq(5) method was originally proposed to stabilize UPO imbedded

- .within a strange attractor. Later it was generalized for the
we can evaluate the mean deviation of the anomalous traje%—ase of Hamiltonian systenfd9]. Different modifications
tory from the attractor, )

and numerous applications of the OGY method can be found
—a)2) = (ve—a)2(1+ 2e(x)+ e2(x2))". 9 in Ref. [20]. . o

(Oneam@))=(yo—aX AR ©) Let the orbit to be controlled follow a periodic sequence:

Here we assume that the coordinatg@ndx; are uncorre- 1 —T3— - —Tg—rg,,=r7 . Linearizing the dynamical

lated, i.e.,(x;x;)=3; because of the chaotic nature of the quations(1) in the neighborhood of this periodic orbit

trajectory. Finite correlations lead to some minor change$y (Po). we obtain

only. Taking into account that for a homogeneous trajectory

(x)=0 and(x*)=1/3, we get fe1=Tha(Po) =L =Th(Po) ]+ B8Py, (1)

2\ _ LA\ (v )2 +e2/3)1.
(Pt ) ={(Ynr1—a)?)=(yo—a)’exdnin(1 6/3)](10) whereB=(a/ap)F(r}, ,p)|p=p,, Parametep is eithera or e,

and pg is its nominal value. Control is achieved by small

Thus(pﬁ> grows exponentially, unlike a normal diffusive variations of the parametex.
regime whergp2)=n. A direct application of the OGY method for the control of

In general, to distinguish the areas with regular and chathe UPO faces two difficulties. First, since Ed) is not a
otic dynamics, we calculate the Lyapunov exponéihtsWe  purely dissipative map, the one-step Jacobian matriray
classify the domains of the phase space according to the sigiossess complex eigenvalues at some points of the orbit.
of the local Lyapunov exponerx calculated for a pair of This makes the application of the original OGY method im-
neighboring trajectories. Then, marking the domains of regupossible. To avoid this difficulty, we could apply the original
lar and chaotic motion where, respectively< —0.1 or A OGY formula, not at each iteration, but afteiterations(one
>0.1 with black and white dots, we visualize the structure ofperiod. In other words, we could apply control for kth
the phase space. The typical pattern #o¢2.5, e=1.7 is power of the matrixF which is a cyclic matrix,F*(r}")
shown in Fig. 6a). The solid line shows the island of stabil- =r{, ,=r whose eigenvalues are real. However, here we
ity, located in the area of irregular dynamics. For largé¢he  face the second difficulty, namely, the sensitivity of the
measure of chaos increases, see Fig) for e=2.2. These k-step control to external or numerical noise. A necessary
figures demonstrate a complex fractal structure of the phasmodification of the OGY method that allows us to apply the
space. Initial points of the regular and chaotic trajectorieparametric perturbation at each step was proposed by Lai
cover the phase space, forming a stochastic fractal patteret al.[24]. In their approach they considered stable and un-
We would like to mention a correlation between this patternstable directions at each point of the UPO.kIF 1, these
and the fractal structure of the attractor’s basin. This corredirections do not necessary coincide with the eigenvectors of
lation originates from the fact that the basin contains mainljthe Jacobian matrix. An efficient method to calculate stable
the regular trajectories. Because of strong chaos one cannahd unstable directions is given in RE24]. They can also
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be calculated by the well-known method of diagonalization
of the stability matrixL¥=L(r;)L(ri;1)---L(r;+,) at each y
point of the orbit.

Let the unit vectorgy,) ande,,, be local ¢=r}) stable
and unstable directions. It is worthwhile to introduce a
complementary orthogonal badig,) andf,, by means of
the following relations: f{;,em="fymeum=1, and
f &y = 5m €y =0- Here index stands for a transposed
vector,f‘=(fx,fy). Making use of the OGY stabilization
conditionf},, 1) Fns1—Th+1]1=0, one obtain§26]

0.49995

0.49990 |

B fL(nH){L[rn—r:(po)]}

opn=
fL(n+ 1)B

12

If the object of control is an unstable fixed point, then
fum—fu, Ty—r*  fuL—\f,. In this case Eq(12)
is reduced to the well-known OGY formu(d8]. Applying
the parametric perturbatiofl2) at each iteration, one mini-
mizes the effect of external noi§@5]. At the same time, in a
real situation it is desirable to reduce the rate of numerical W L
calculations, i.e., to apply the perturbation only infrequently. : Y
We propose the optimal way of control when the perturba- . )
tion is applied not at each step but at some specific danger- FIG. 7. Evolution of the phase space unqler transformation Eq.
ous points. This can be done due to the above-mentioned3: shown for some points of the UPO's with=34 andk=35.
inhomogeneity of the trajectories in the phase space. W@)_Imqal view of a Smal! doma_m .Of the phase space. The e”.'pt'c
avoid unnecessary calculations of the perturbatigh at the ~ POt is marked by a circle within squaie and the hyperbolic
points where the probability of deviation from the target tra-POINtS &r¢ marked by crosses within squaseandd. Stable(un-
; . . .~ stablg directions at the hyperbolic points are shown by solid
{zﬁtec:g;gfgﬁggﬁﬁﬁ;ﬁ:ﬁ%ﬂal care at the dangerous pomt?dasheci lines. (b)—(d) Enlargement of the vicinity of the fixed
The first question that arises is how to locate UPO’s,pOIntSb d. respectively, after the transformation H43).
which are the object of control. Traditional methods of locat-10—20 iterations we reach the focus. Its location coincides
ing periodic orbits based on the Newton-Raphson procedurgith the hyperbolic fixed point. Recently Davidchack and
require a good guess of the initial conditions for the iterativelLai [29] presented a method for the fast, complete, and ac-
procedure. In general, they are not applicable for cycles witlturate detection of UPO in chaotic systems. Their method is
high periods. An appropriate general method was developedssentially based on the method by Schmelcher and Diakonis
by Schmelcher and Diakon§87]. The method is applicable [27] and gives an effective technique for selection of the
even for the least unstable high-period orp&8]. They used  starting points.
the principal idea of control—transforming unstable orbits In Fig. 8a) we show the behavior of the deviatian
into stable ones—to locate UPO. The first step of the method-r: as the control is switched on and off. One can see that
[27] is to apply a universal linear transformation of coordi- the system exhibits a long transient period before a trajectory
nates in order to get stable orbits at the same positions wheggin be stabilized. We use the logarithmic scale to separate
unstable orbits are located. Then the pOSitiOﬂ of stable Orbitaifferent stages of the control procedu(é) chaotic oscilla-
in new coordinates can be found by a simple iterative procetions before entrapment under contr(®) an exponentially
dure. For the 2D case the transformation of coordinates takegst approach to the target periodic orl) stable motion

the following form: along the unstable period-34 orbi#) exponentially fast de-
. viation from the target orbit after the control is off) re-
M+1= Mt ALF(rn) —ral, (13)  construction of natural chaotic oscillations. The rates of ex-

ponential approactstage 2 and exponential deviatiofstage
where A; is one of @,=8 (i=1,2,...,8)invertible 2X2 4 are different. The former is determined by the amplitude
matrices. (In D-dimensional space therep,=D!2°.) The  of external perturbation and the latter by the parameters of
concrete form ofA; is determined by the type of theorre-  the free evolution of the systeifin particular by the Lay-
spondingunstable fixed point. In Figs.(@-7(d) an example  punov exponent
of this transformation for some points of high-period ( Figure 9 demonstrates the mechanism of OGY control in
=34,35) UPO is shown. We used the transformati®8)  action. We launch four testing pointblack squaresfrom
with the matrix A= (g _9) in order to locate a hyperbolic the vicinity of randomly selected saddle points which belong
point [see point in Fig. 7(a)]. This transformation converts to the period-34 orbit. The trajectories of the testing points
a hyperbolic fixed point into a stable focus. Iterating Eq.are shown after three successive iterations. After the third
(13), starting from an arbitrary place near poiot after iteration these points are aligned along the stable direction.
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FIG. 8. Stabilization of the coordinate, when control is
switched oni(a) without noise,(b) with Gaussian noise.
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point is that Eq.(12) is valid only when the trajectory,
enters a region which is sufficiently close to the target peri-
odic orbit. The size and the shape of this redilat us call it
the entrapment regiofER)] are determined by the quantity
6Pmax @nd the local characteristics of a periodic orbitI(,
and B). In our numerical studysp.y iS taken from the
interval 0.0007-0.03. In fact, OGY control relati¢h?) can

be represented as follows:

opp=M;x,+N;d8y,, i=(n)modk. (14

The coefficientdM; andN; can be obtained directly from Eq.
(12). The ER for anyith point of the periodic orbit is deter-
mined by the condition

|Mi6X+Niéy|<5pmax- (15)

In Table | we give numerical values for the coefficients
M; andN; in some typical points of the UPO. The size of the
ER'’s determine the time of the entrapment under the control
as well as the critical amplitude of noise which breaks down
control. The ared&,; of the ER for any point on the UPO is
proportional todp,ax. The proportionality coefficient varies
along the orbit and is given by the numbdvk ,N;. For
example, the coefficier¥l; varies by 4 orders of magnitude
along the orbi{see Table)l Then the sizes of the ER’s of the
corresponding points on the UPO also differ by a few orders
of magnitude. Keeping this fact in mind, it is worthwhile to
introduce a concept dbcal andglobal control for UPO with
essentially different ER’s. In the case of local control the
condition| 8p,,| < dpmax is Valid only at certain points of the

Then they follow the periodic orbit remaining in alignment periodic orbit. In the case of global control this condition is

and approaching the saddle point after each iteration.

valid anywhere in the UPO. It is clear that the difference

At first glance it looks as though the results of the controlbetween local and global control practically vanishes if the
of the high-period unstable orbit in reversible maps wereorbit is a fixed point or a homogeneous orbit, i.e., an orbit
very similar to the corresponding results for pure Hamil-with approximately equal areas of the ER for all points along
tonian system§24]. Nevertheless, more careful examination the orbit. This occurs because if the entrapment condition is
shows that in reversible maps the coexistence of attractor arghtisfied oncelocally), it will also be satisfied at any other
stability islands complicates the situation considerably. Thepoint of the UPO, thus leading to global control. In contrast,

y

0.049930

0.0 49965

FIG. 9. Local evolution of four testing points
towards the stable direction. Staljlenstable di-
rections are shown by solidlashedl lines.
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TABLE |. Size of the entrapment region for different points on the UPO.

Points x* y* M; N;
3.4165 0.4997 —0.000 348 2.722
Close to the attractaidangerous poinjs
3.9161 0.4996 —0.000 404 2.502
5.6863 —1.9060 —2.556 355 2.034
Far from the attractor
1.4545 —4.2317 —3.396 934 5.044

for nonhomogeneous UPO, global control takes place onlfL0(c) and 1Qd), where we plot the controlling perturbation
when the condition of local control for points with minimal &p,, for two dangerous points given in Table I. Numbers
areas of ER is satisfied. From the point of view of the real-along the horizontal axi§; =n/k, is the discrete tima mea-
ization of control, these points ar@angerous Figure 10 sured in units of the period of the orbk=34. The ampli-
shows some specific features of the realization of control inude of the controlling perturbation drops almost to zero as
the complex systenil). In Fig. 10a) we show a transient soon as the condition of the local control has been satisfied.
region from the moment when the perturbation is turned omfter that moment the whole orbit is trapped under control.
to the steady stage of global control. The duration of thisUnlike this, a multiple application of the controlling pertur-
transient region is about 700 iterations. In Fig.(dOwe  bation at the points which are not dangerdti®e perturba-
show the moments at which the condition of local controltion was turned on an average of once per perimes not

(| 8pnl< Spmay) Was satisfied at any point of the controlled provide a realization of global control. Some vertical lines in
orbit. The role of the dangerous points can be seen in Figsigs. 1Gb)—10d) are thicker than the others. Thick lines

o. 10 r . r —
C
0.05} .
_____ JEH-H4H- __%E”l“f

0
_A'pmax
-0.05} .
—10 20 30 40 S0

T

0.10 d

0.05}
= - J O L Y [P % i_pl”fi

= o} 1 E:lf
K, T** 0 v

< | AT T
-0.01f ] -Ap

-0.05|

d""Z;:".'lﬂ)\’
—0.02fp—---yo-oogo oo sy i I N . L A i N L
500 1000 10 20 30 40 SO
n T

FIG. 10. (a) Transient behavior at the initial stage of control. The control perturbation is applied at the 500th iteration. About 300
iterations after that the trajectory is moving chaotically. Fast convergence to the target trajectory starts at around the 800th iteration. The
transient phase is completed when the trajectory is stabilized near the target trajectory. Here the deviation from the target trajectory is
reduced by almost 20 orders of magnitude in comparison with the initial chaotic traje@pryemporal variation of the controlling
parameteBp, [see Eq(12)] along the same trajectory. Horizontal linés,= * Sp,.x Show the interval where the condition of local control
is satisfied. It is clearly seen that while this condition has been satisfied many times, control is not estalglisiedi(d) Controlling

perturbationsp,, (T=n/k) for two dangerous points given in Table I. Global control is realized immediately after the condition of local
control has been satisfied.
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o ooosl ' ' ' i =4080 iterationsat the dangerous points shown in Table I.
At the points close to the attractor, however, the same con-
dition was satisfied 119 times.
0.0004} E
(n)
A 0.0003) | IV. CONCLUSIONS
e We presented a study of the phase space of a complex
Y o o002} - system and propose a modified OGY method that enables us
i to control high-period unstable orbits. The dynamics of the
0 0001 | i complex system is described by mappifig and is essen-
tially affected by the interaction between the attractor and the

stability islands. This interaction gives rise to strong spatial

] and temporal inhomogeneity of the phase space. Because of

$, hoise this inhomogeneity a typical trajectory consists of regular

cParts (close to the attractprand chaotic regions far away
from it. In the chaotic region the trajectory exhibits intermit-
tency, i.e., a diffusive motion along theaxis is suddenly

interrupted by long jumps. Whep— * o the diffusion be-

appear when the trajectory returns to the same point for thSomes anomalously fast; here the root-mean-square displace-

time interval which cannot be resolved in the horizontal axis oy grows exponentially with time.

scale. This may happen only before the global control is Because of all these singularities, which are typical for

established. : o
L any complex system, a direct application of the OGY method

. To (.:heck the senS|t|v1ty of the.control 0 gxternal Gaussy, Xontroﬁ)high}/period unstable E))fbits fails. Effective at every
ian noise we add a terst, to the right-hand side of Eq1).  step of iteration, it nevertheless requires hard computational
Here the components, andé, are independent identically efforts to calculate stable and unstable directions at each
distributed random variables with zero mean value and a unjoint of the orbit. Another option—to apply the control per-
variance. In Fig. &) we show the effect of the Gaussian turbation at everykth step of the periodt- orbit—is much
noise withs=0.01. In the logarithmic scale one can clearly easier from the point of view of calculations, but is unstable
see that when subjected to the action of the noise the effiwith respect to external noise. Our version of the OGY
ciency of control goes down by orders of magnitude. How-method is free from these difficulties. It was developed es-
ever, the OGY method even in the presence of noise allowpecially for systems with strongly nonhomogeneous phase
control to be maintained during the same temporal interval aspace and is based on the concept of local and global control.
without noise. We demonstrated that by applying OGY control only at dan-

We also study the effectiveness of control for differentgerous points we obtain the same efficiency that the original
amplitudess. The effectiveness can be characterized by theOGY method has, but at the same time reduce drastically the
root-mean-square deviatiar{s) of the real trajectory from computational efforts. For the above-considered example of
the target periodic orbit. The plot in Fig. 11 exhibits an al-the period-34 orbit the dangerous points constitute only
most linear dependence(s)«s at low levels of noise. This ~30% of the total number of points at the periodic orbit.
dependence becomes nonlinear when the amplisudl®  The concept of local and global control turns out to be suf-
creases. Such behavior is in agreement with recent theoreficiently powerful and effective and makes it unnecessary to
cal estimation$30,31]. develop a new method of control different from the OGY

It is worth noting that the points which are marked asmethod.
dangerous in the process of global stabilization remain dan-
gerous as well with respect to the breakdown of control in
the presence of noise. At the dangerous points the condition
of local control, 6p,< Spmax, IS Violated much more often This research was supported by the Fundamental Re-
than at points with large entrapment areas. For example, faearch Foundation of the Ukraine Ministry of Science, Grant
amplitudes=0.06, the condition of local control was satis- No. 2.4/342, and by CONACyT(Mexico), Grant No.
fied only 1 or O times in a total of 120 attempts (284  28626-E.

0.0001 0.0002

FIG. 11. Rms deviation from the target orbit vs amplitude of th
external noise. This deviation shows the stability of control.
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